organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Hydroxy-6-[(4-hydroxy-1-oxo-1,2dihydrophthalazin-6-yl)carbonyl]phthalazin-1(2*H*)-one

Rui-Sha Zhou and Jiang-Feng Song*

Department of Chemistry, North University of China, Taiyuan, Shanxi 030051, People's Republic of China Correspondence e-mail: jfsong0129@gmail.com

Received 16 October 2009; accepted 4 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.059; wR factor = 0.161; data-to-parameter ratio = 11.4.

In the crystal structure of the title compound, $C_{17}H_{10}N_4O_5$, the molecules lie on twofold axes (through the ketone bridge C and O atoms). The dihedral angle between the two phthalazine rings is 52.25 (1)°. In the crystal, intermolecular N-H···O and O-H···O interactions link the molecules.

Related literature

For the acylate reaction of polycarboxylate with hydrazine hydrate, see: Benniston *et al.* (1999); Hu *et al.* (2004).

Experimental

Crystal data

 $C_{17}H_{10}N_4O_5$ $M_r = 350.29$ Monoclinic, C2/ca = 11.576 (3) Å b = 10.511 (3) Å c = 12.274 (3) Å $\beta = 111.718 (4)^{\circ}$ $V = 1387.4 (6) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEX CCD	3800 measured reflections
diffractometer	1370 independent reflections
Absorption correction: multi-scan	774 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1995)	$R_{\rm int} = 0.057$
$T_{\min} = 0.963, \ T_{\max} = 0.987$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ 120 parameters $wR(F^2) = 0.161$ H-atom parameters constrainedS = 0.99 $\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$ 1370 reflections $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$O1-H1\cdots O2^{i}$ $N2-H2\cdots O1^{ii}$	0.85 0.86	1.76 2.19	2.581 (3) 3.034 (4)	163 168	
Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.					

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.10 \text{ mm}$

 $\mu = 0.13 \text{ mm}^{-1}$

T = 293 K

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Doctoral Foundation of North University of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2110).

References

- Benniston, A. C., Yufit, D. S. & Howard, J. A. K. (1999). Acta Cryst. C55, 1535– 1536.
- Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Hu, X. X., Xu, J. Q., Cheng, P., Chen, X. Y., Cui, X. B., Song, J. F., Yang, G. D. & Wang, T. G. (2004). *Inorg. Chem.* 43, 2261–2266.

Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o3050 [doi:10.1107/S1600536809046509]

4-Hydroxy-6-[(4-hydroxy-1-oxo-1,2-dihydrophthalazin-6-yl)carbonyl]phthalazin-1(2H)-one

R.-S. Zhou and J.-F. Song

Comment

In situ hydrothermal acylate reaction of multidentate aromatic polycarboxylate with hydrazine hydrate has been investigated (Benniston *et al.*, 1999; Hu *et al.*, 2004). We intend to select 3, 3'-4, 4'-benzophenonetetracarboxylic dianhydride as the ligand to continue the exploration of the *in situ* acylate reaction. However, the crystals of the title compound were obtained unintentionally as the harvested product of the hydrothermal reaction of 3, 3'-4, 4'-benzophenonetetracarboxylic dianhydride, $CoCl_2$ and hydrazine hydrate. In the title compound, a twofold axis lies in the C atom and O atom of the ketone bridge (Fig. 1). Each organic molecule connects six adjacent ones into a three-dimensional supramolecular network by intermolecular O—H…O (2.576 Å) and N—H…O (3.034 Å) hydrogen bonds (Fig. 2 and Fig. 3).

Experimental

Yellow needle-like crystals of the title compound were synthesized hydrothermally from a mixture of CoCl₂.H₂O (0.0230 g), 3, 3'-4, 4'-benzophenonetetracarboxylic dianhydride (0.0641 g), hydrazine hydrate (0.028 ml), and deionized water (15 ml) in a 23 ml Teflon-lined stainless steel autoclave under autogenous pressure heated to 170 °C for 4 days and cooled to room temperature. Crystalline product was filtered, washed with distilled water, and dried at ambient temperature.

Refinement

The H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å, N—H = 0.85 Å and isotropic displacement parameters $U_{iso}(H) = 1.2U(C_{eq} / N_{eq})$. However, the H of the O1 atom was located in a difference Fourier map refined as riding, with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of the title compound shown with 30% probability ellipsoids [symmetry code: (A) 1 - x, y, 1.5 - z].

Fig. 2. View of the crystal packing of the title compound, with O—H…O and N—H…O hydrogen bonds drawn as dashed lines [see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity].

Fig. 3. Three-dimensional network formed by hydrogen bonds (dashed lines).

4-Hydroxy-6-[(4-hydroxy-1-oxo-1,2-dihydrophthalazin-6-yl)carbonyl]phthalazin-1(2H)-one

Crystal data	
$C_{17}H_{10}N_4O_5$	$F_{000} = 720$
$M_r = 350.29$	$D_{\rm x} = 1.677 \ {\rm Mg \ m^{-3}}$
Monoclinic, C2/c	Mo K α radiation, $\lambda = 0.71073$ Å
a = 11.576 (3) Å	$\theta = 2.7 - 26.0^{\circ}$
b = 10.511 (3) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 12.274 (3) Å	T = 293 K
$\beta = 111.718 \ (4)^{\circ}$	Needle-like, yellow
V = 1387.4 (6) Å ³	$0.30 \times 0.25 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX CCD diffractometer	1370 independent reflections
Radiation source: fine-focus sealed tube	774 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.057$
T = 293 K	$\theta_{\text{max}} = 26.0^{\circ}$
ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1995)	$h = -14 \rightarrow 12$
$T_{\min} = 0.963, T_{\max} = 0.987$	$k = -12 \rightarrow 12$
3800 measured reflections	$l = -15 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.161$	$w = 1/[\sigma^2(F_o^2) + (0.0758P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\rm max} = 0.005$
1370 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
120 parameters	$\Delta \rho_{\rm min} = -0.22 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.5000	-0.2105 (3)	0.7500	0.0411 (9)
0.1272 (2)	0.0713 (2)	0.23363 (19)	0.0468 (7)
0.0902	0.1164	0.1732	0.070*
0.5078 (2)	0.3361 (2)	0.5277 (2)	0.0512 (8)
0.2410 (3)	0.2518 (3)	0.2824 (2)	0.0406 (8)
0.3389 (3)	0.3149 (3)	0.3641 (2)	0.0367 (8)
0.3513	0.3916	0.3467	0.044*
0.3861 (3)	0.1464 (3)	0.5017 (3)	0.0303 (8)
0.2158 (3)	0.1394 (3)	0.3114 (3)	0.0356 (9)
0.2831 (3)	0.0802 (3)	0.4238 (2)	0.0314 (8)
0.2480 (3)	-0.0367 (3)	0.4556 (3)	0.0362 (9)
0.1781	-0.0790	0.4052	0.043*
0.4564 (3)	0.0920 (3)	0.6103 (2)	0.0320 (8)
0.5254	0.1346	0.6620	0.038*
0.4182 (3)	0.2707 (3)	0.4689 (3)	0.0340 (8)
0.3181 (3)	-0.0884 (3)	0.5624 (3)	0.0363 (9)
0.2956	-0.1668	0.5835	0.044*
0.5000	-0.0954 (4)	0.7500	0.0281 (10)
0.4228 (3)	-0.0255 (3)	0.6404 (2)	0.0297 (8)
	x 0.5000 0.1272 (2) 0.0902 0.5078 (2) 0.2410 (3) 0.3389 (3) 0.3513 0.3861 (3) 0.2158 (3) 0.2480 (3) 0.2480 (3) 0.1781 0.4564 (3) 0.5254 0.4182 (3) 0.3181 (3) 0.2956 0.5000 0.4228 (3)	x y 0.5000 -0.2105 (3) 0.1272 (2) 0.0713 (2) 0.0902 0.1164 0.5078 (2) 0.3361 (2) 0.2410 (3) 0.2518 (3) 0.3389 (3) 0.3149 (3) 0.3513 0.3916 0.3861 (3) 0.1464 (3) 0.2480 (3) -0.0367 (3) 0.1781 -0.0790 0.4564 (3) 0.2707 (3) 0.5254 0.1346 0.4182 (3) -0.0884 (3) 0.2956 -0.1668 0.5000 -0.0255 (3)	x y z 0.5000 -0.2105 (3) 0.7500 0.1272 (2) 0.0713 (2) 0.23363 (19) 0.0902 0.1164 0.1732 0.5078 (2) 0.3361 (2) 0.5277 (2) 0.2410 (3) 0.2518 (3) 0.2824 (2) 0.3389 (3) 0.3149 (3) 0.3641 (2) 0.3513 0.3916 0.3467 0.3861 (3) 0.1464 (3) 0.5017 (3) 0.2158 (3) 0.1394 (3) 0.3114 (3) 0.2831 (3) 0.0802 (3) 0.4238 (2) 0.2480 (3) -0.0367 (3) 0.4556 (3) 0.1781 -0.0790 0.4052 0.4564 (3) 0.920 (3) 0.6103 (2) 0.5254 0.1346 0.6620 0.4182 (3) 0.2707 (3) 0.4689 (3) 0.3181 (3) -0.0884 (3) 0.5624 (3) 0.2956 -0.1668 0.5835 0.5000 -0.0954 (4) 0.7500 0.4228 (3) -0.0255 (3) 0.6404 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O3	0.046 (2)	0.030 (2)	0.0369 (19)	0.000	0.0043 (17)	0.000
O1	0.0448 (16)	0.0439 (16)	0.0330 (14)	-0.0014 (13)	-0.0076 (12)	0.0032 (11)
O2	0.0573 (18)	0.0442 (16)	0.0328 (14)	-0.0200 (14)	-0.0057 (13)	0.0032 (12)
N1	0.0419 (18)	0.0406 (19)	0.0291 (15)	0.0021 (15)	0.0011 (14)	-0.0015 (13)
N2	0.0413 (18)	0.0273 (16)	0.0286 (15)	-0.0031 (13)	-0.0020 (14)	0.0025 (12)
C6	0.033 (2)	0.032 (2)	0.0226 (16)	-0.0007 (15)	0.0059 (16)	-0.0040 (14)
C9	0.038 (2)	0.033 (2)	0.0260 (18)	0.0018 (17)	0.0002 (17)	-0.0027 (15)
C5	0.0308 (19)	0.033 (2)	0.0254 (16)	0.0047 (16)	0.0051 (15)	-0.0033 (14)
C4	0.037 (2)	0.032 (2)	0.0297 (18)	-0.0059 (16)	0.0016 (17)	-0.0023 (15)
C7	0.0294 (19)	0.035 (2)	0.0231 (17)	-0.0043 (16)	-0.0001 (15)	-0.0035 (14)
C8	0.038 (2)	0.033 (2)	0.0254 (17)	-0.0009 (17)	0.0053 (16)	-0.0021 (15)
C3	0.039 (2)	0.033 (2)	0.0302 (18)	-0.0042 (17)	0.0050 (16)	-0.0010 (16)
C1	0.028 (3)	0.024 (3)	0.027 (2)	0.000	0.005 (2)	0.000
C2	0.035 (2)	0.030 (2)	0.0217 (17)	0.0007 (15)	0.0074 (16)	-0.0046 (13)

Geometric parameters (Å, °)

O3—C1	1.210 (5)	C9—C5	1.450 (4)
O1—C9	1.323 (4)	C5—C4	1.394 (4)
O1—H1	0.8501	C4—C3	1.373 (4)
O2—C8	1.231 (4)	C4—H4	0.9300
N1—C9	1.298 (4)	C7—C2	1.386 (4)
N1—N2	1.374 (4)	С7—Н5	0.9300
N2—C8	1.357 (4)	C3—C2	1.401 (4)
N2—H2	0.8600	С3—Н3	0.9300
C6—C7	1.401 (4)	C1—C2 ⁱ	1.502 (4)
C6—C5	1.406 (4)	C1—C2	1.502 (4)
C6—C8	1.455 (5)		
С9—О1—Н1	109.5	С5—С4—Н4	120.5
C9—N1—N2	116.6 (3)	C2—C7—C6	119.7 (3)
C8—N2—N1	127.8 (3)	С2—С7—Н5	120.1
C8—N2—H2	116.1	С6—С7—Н5	120.1
N1—N2—H2	116.1	O2—C8—N2	119.5 (3)
C7—C6—C5	119.5 (3)	O2—C8—C6	125.8 (3)
C7—C6—C8	120.8 (3)	N2	114.6 (3)
C5—C6—C8	119.7 (3)	C4—C3—C2	121.5 (3)
N1—C9—O1	119.2 (3)	С4—С3—Н3	119.3
N1—C9—C5	123.8 (3)	С2—С3—Н3	119.3
O1—C9—C5	117.0 (3)	$O3-C1-C2^{i}$	119.3 (2)
C4—C5—C6	120.5 (3)	O3—C1—C2	119.3 (2)
C4—C5—C9	122.3 (3)	$C2^{i}$ — $C1$ — $C2$	121.5 (4)
C6—C5—C9	117.2 (3)	C7—C2—C3	119.7 (3)
C3—C4—C5	119.0 (3)	C7—C2—C1	122.8 (3)
C3—C4—H4	120.5	C3—C2—C1	117.3 (3)
C9—N1—N2—C8	4.9 (5)	N1—N2—C8—O2	173.9 (3)
N2—N1—C9—O1	-176.2 (3)	N1—N2—C8—C6	-6.8 (5)
N2—N1—C9—C5	1.1 (5)	C7—C6—C8—O2	2.4 (5)
C7—C6—C5—C4	2.4 (5)	C5—C6—C8—O2	-177.7 (3)
C8—C6—C5—C4	-177.5 (3)	C7—C6—C8—N2	-176.8 (3)
C7—C6—C5—C9	-178.3 (3)	C5-C6-C8-N2	3.1 (4)
C8—C6—C5—C9	1.8 (5)	C5—C4—C3—C2	0.8 (5)
N1—C9—C5—C4	175.2 (3)	C6—C7—C2—C3	-0.6 (5)
O1—C9—C5—C4	-7.5 (5)	C6—C7—C2—C1	174.2 (3)
N1—C9—C5—C6	-4.1 (5)	C4—C3—C2—C7	0.6 (5)
O1—C9—C5—C6	173.2 (3)	C4—C3—C2—C1	-174.4 (3)
C6—C5—C4—C3	-2.4 (5)	O3—C1—C2—C7	-148.7 (2)
C9—C5—C4—C3	178.4 (3)	C2 ⁱ —C1—C2—C7	31.3 (2)
C5—C6—C7—C2	-0.9 (5)	O3—C1—C2—C3	26.2 (3)
C8—C6—C7—C2	179.0 (3)	C2 ⁱ —C1—C2—C3	-153.8 (3)
Symmetry codes: (i) $-x+1$, y , $-z+3/2$.			

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A	
O1—H1···O2 ⁱⁱ	0.85	1.76	2.581 (3)	163	
N2—H2···O1 ⁱⁱⁱ	0.86	2.19	3.034 (4)	168	
Symmetry codes: (ii) $x-1/2$, $-y+1/2$, $z-1/2$; (iii) $-x+1/2$, $y+1/2$, $-z+1/2$.					

Fig. 3